Contrasting enantioselective DNA preference: chiral helical macrocyclic lanthanide complex binding to DNA

نویسندگان

  • Chuanqi Zhao
  • Jinsong Ren
  • Janusz Gregoliński
  • Jerzy Lisowski
  • Xiaogang Qu
چکیده

There is great interest in design and synthesis of small molecules which selectively target specific genes to inhibit biological functions in which particular DNA structures participate. Among these studies, chiral recognition has been received much attention because more evidences have shown that conversions of the chirality and diverse conformations of DNA are involved in a series of important life events. Here, we report that a pair of chiral helical macrocyclic lanthanide (III) complexes, (M)-Yb[L(SSSSSS)](3+) and (P)-Yb[L(RRRRRR)](3+), can enantioselectively bind to B-form DNA and show remarkably contrasting effects on GC-rich and AT-rich DNA. Neither of them can influence non-B-form DNA, nor quadruplex DNA stability. Our results clearly show that P-enantiomer stabilizes both poly(dG-dC)(2) and poly(dA-dT)(2) while M-enantiomer stabilizes poly(dA-dT)(2), however, destabilizes poly(dG-dC)(2). To our knowledge, this is the best example of chiral metal compounds with such contrasting preference on GC- and AT-DNA. Ligand selectively stabilizing or destabilizing DNA can interfere with protein-DNA interactions and potentially affect many crucial biological processes, such as DNA replication, transcription and repair. As such, bearing these unique capabilities, the chiral compounds reported here may shed light on the design of novel enantiomers targeting specific DNA with both sequence and conformation preference.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lanthanide(III) and lead(II) complexes of a chiral nonaaza macrocyclic amine based on 1,2-diaminocyclopentane.

The macrocyclic nonaaza 3 + 3 amine based on diaminocyclopentane forms enantiopure helical complexes with lanthanide(III) ions. In contrast to analogous complexes based on 1,2-trans-diaminocyclohexane, no clear helicity process is observed. Crystal structures of these compounds show tight helical wrapping of the macrocycle around the lanthanide(III) ion leading to the formation of a double heli...

متن کامل

Dynamic switching between binding sites in the complexation of macrocyclic ‘push–pull’ chromophores to lanthanides

The introduction of a 1,3-diacetylpyridine moiety, as an additional binding niche in a macrocyclic receptor ligand containing a conjugated, push–pull malonate functionality, leads to, in addition to the 1:1 binding stoichiometry, the equilibrium formation of multiple complexes, specifically 1:2, 2:1, and 3:1 ligand:metal complexes with lanthanide trications. Various binding modes elicit distinc...

متن کامل

Enantioselective Synthesis of Modafinil Drug using Chiral Complex of Titanium and Diethyltartarate

Modafinil (Diphenyl methyl Sulfinyl acetamid) is used clinically in the treatment of narcolepsy and sleeping disorders. The synthesis of R-modafinil, have started with the reaction of benzhydrol and thioglycolic acid in trifluoroacetic acid to afford benzhydryl sulfanyl acetic acid. The reaction of acid with thionyl chloride in benzene followed by treatment with ammonium hydroxide gave acetamid...

متن کامل

BINDING OF THE ANTITUMOR DRUG ADRIAMYCIN TO DNA-HISTONE COMPLEXES

Isotherms of the binding of the anthracycIine antibiotic, adriamycin (adriblastin), to DNA histone complexes was studied by means of spectroscopic analysis. The results indicated that: (a) binding of adriamycin to histones reduced the interaction of histones with DNA, (b) binding of the drug to DNA did not change the binding affinity of histone to DNA and, (c) in the explored binding range...

متن کامل

Chiral probes for the handedness of DNA helices: enantiomers of tris(4,7-diphenylphenanthroline)ruthenium(II).

The chiral complexes tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) (RuDIP) are shown to be specific chemical probes with which to distinguish right- and left-handed DNA helices in solution. In spectrophotometric titrations of racemic RuDIP with both B-form calf thymus DNA and Z-form poly[d(G-C)], hypochromicity in the intense metal-to-ligand charge-transfer band is found and enhancement i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012